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A convergent second-order Cartesian grid finite difference scheme for the solution
of Maxwell’'s equations is presented. The scheme employs a staggered grid in space
and represents the physical location of the material and metallic boundaries correctly,
hence eliminating problems caused by staircasing, and, contrary to the popular
Yee scheme, enforces the correct jump-conditions on the field components across
material interfaces. A detailed analysis of the accuracy of the new embedding scheme
is presented, confirming its second-order global accuracy. Furthermore, the scheme
is proven to be a bounded error scheme and thus convergent. Conditions for fully
discrete stability is furthermore established. This enables the derivation of bounds
for fully discrete stability with CFL-restrictions being almost identical to those of
the much simpler Yee scheme. The analysis exposes that the effects of staircasing as
well as a lack of properly enforced jump-conditions on the field components have
significant consequences for the global accuracy. It is, among other things, shown
that for cases in which a field component is discontinuous along a grid line, as
happens at general two- and three-dimensional material interfaces, the Yee scheme
may exhibit local divergence and loss of global convergence. To validate the analysis
several one- and two-dimensional test cases are presented, showing an improvement
of typically 1 to 2 orders of accuracy at little or no additional computational cost over
the Yee scheme, which in most cases exhibits first order accuragyoo1 Academic Press
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1. INTRODUCTION

The development of efficient, yet simple, computational methods for the accurate tir
domain solution of Maxwell’s equations remains a very significant challenge for seve
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reasons. The wave nature of the basic phenomena requires that one carefully cons
even small local errors as they eventually may propagate to a different location and ruin
overall accuracy. Furthermore, the requirement that the scheme be able to propagate w
accurately and efficiently over many periods is a problem of central concern. This lat
problem has received much attention in recent years through the attempt to apply high-o
finite difference scheme, see [1] and references therein, and multidomain spectral metl
[2-4]. These methods, however, share the disadvantage either that they are restrict
simple geometries or that a multidomain framework must be introduced to facilitate t
correct treatment of general metallic boundaries and material interfaces, hence introdu
a need for automated grid-generation, which remains a nontrivial task.

This situation is contrary to the very popular Yee scheme, introduced in [5], which utiliz:
an embedding technique by simply assigning appropriate material properties to the var
grid points that form a simple Cartesian grid. The formally second-order accurate sche
employs a fully staggered space—time grid [6]. This straightforward approach remains
far the most popular time-domain computational technique for the modeling and desigt
problems in computational electromagnetics. An updated review and numerous exam
of the usefulness of this simple approach can be found in [1, 7].

Itis, however, well known that the straightforward embedding of an arbitrary volume
the grid introduces a number of more subtle problems. The inability of the simple embedc
technigue to accountaccurately for the position and shape of the boundaries of the embe
volumes requires one to approximate the boundaries and interfaces by a staircased ¢
While this may seem adequate for many problems, it nevertheless affects the ove
accuracy and essentially makes the scheme first order. In the case of metallic boundz
this problem has received considerable interest in the past, see e.g. [8-10], and a numt
resolutions have been suggested, e.g., local grid-refinements [11] and locally conforn
FDTD methods [12, 13], contour path methods [14], and nonorthogonal curvilinear FDT
methods [15, 16], and time-domain finite volume methods on fully unstructured grids [1
18]. A variety of other techniques can be found described in [1, 7]. Most, if not all, ¢
these methods, however, sacrifice the simplicity of the original Yee scheme to achieve
improved accuracy.

A more subtle problem that has received significantly less attention is the effect of us
staircasing around a nonmetallic embedded interface, i.e., a transparent interface. Althc
the conditions connecting the field components on both sides of such media are well knc
no effort is made in the Yee scheme to enforce these conditions. To overcome the obv
problems associated with such an approach, the standard technique is to extend the
of the interface by introducing a transition zone in which averaged material properties
employed. While such techniques appear to improve the overall accuracy, it has neverthe
been shown that the global accuracy of the scheme is reduced to first order [19]. This
one-dimensional result and, as we shall show here, the situation may be considerably w
for problems beyond one dimension.

The need to accurately model the location and the physical properties of embedded it
faces is not new nor is it restricted to the area of computational electromagnetics. Ind
much work aimed at resolving such issues has appeared in the context of the mode
of seismic waves, acoustic lenses, and ultrasound imaging. The methods developet
such problems are often termed embedded interface methods (see, e.g., [20] and refer
therein) to reflect the basic idea that a simple Cartesian grid is maintained and the fi
difference stencils around the embedded interfaces are modified to account for the col
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position of the interface and the proper physical jump-conditions. Many of these methc
however, involved the solution of the scalar wave-equation rather than the full syster
equations as is the area of main interest when solving Maxwell’'s equations.

To address specifically the problems associated with the solution of Maxwell’'s equatit
using embedded metallic and general material interfaces, we present in this work a n
finite-difference scheme that maintains global second convergence in the presence ¢
bitrary interfaces, curved as well as straight. Moreover, and contrary to previous effo
we prove convergence rigorously and show through detailed theoretical and computati
comparisons with the Yee scheme the clear advantages of using this new scheme. Ar
the many results presented it is worth noting that staircasing problems at metallic bot
aries are resolved at no additional computational cost, and internal material interface:s
treated in an equally efficient way. Indeed, the main additional computational cost of t
new scheme lies in a preprocessing stage and adds only little to the cost of solving
time-dependent problem.

This paper is organized as follows. In Section 2 we discuss the details of the propc
scheme in a one-dimensional setting. Apart from providing the simplicity that allows o
to appreciate the various elements of the scheme, the one-dimensional problem also |
itself to a complete analysis in terms of accuracy, stability, and convergence. The res
of the analysis is supported by a number of examples that compare the performanc
the new scheme with that of the traditional Yee scheme. Particular concerns relate
the solution of Maxwell’s equations beyond one dimension are discussed in Section .
which the basis solution techniques for general two- and three-dimensional situations
outlined. Issues related to efficient implementations are also addressed and a numb
test cases illustrate the performance of the new scheme for two-dimensional problems
exposes many troubling problems with the Yee scheme. Section 4 contains a few conclu
remarks and ideas for future work.

2. THE ONE-DIMENSIONAL SCHEME

To illustrate the central elements of the proposed scheme, let us consider the solutic
the one-dimensional Maxwell equation

JIFE oH
f— = —,
Jt 9z
1
0H OE @)
Koar = oz

where E(z,t) and H(z, t) signifies the mutually perpendicular tangential electric an
magnetic field components, whiteandy refer to the relative permitivity and permeability,
respectively, of the materials. The normalized quantities in Eq. (1) are related to the phys
quantitiesy, z, E, andH as

t=—, z=-—, E=Z3'E, H=H,
L
wherec = 1/./eono is the vacuum speed of light withg and o being the vacuum
permitivity and permeability, respectively, aithy = /uo/eo is the vacuum impedance.
The expressioth is an appropriate length scale, usually taken as the mean wavel&ngth
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of the electromagnetic wave. In this setting, Eq. (1) describes waves propagating at
speed and with lengths measured in units of wavelengths.
In case of a perfectly conducting wall (PEC), the boundary conditions become

oH
E(Zpec, t) == 0 or E == 0, (2)

Zpec

wherezpec Signifies the position of the wall. In case the interface has finite conductivity tf
field components,E®Y, HD) and(E@, H®@), in the two regions are continuous across
the material interface, situatedztat, as

E(l)(Zmat, 1) = E® (Zmat 1), H(l)(Zmat, 1) = H(Z)(Zmat, 1. (3)

We recall that the solution to Eq. (1), subject to the boundary conditions, consists of t
counter propagating waves.
To solve Eq. (1) numerically, we introduce a spatially staggered grid with grichsize

. o 1
zj = hj, Z,j+%:h<1+§>’ 4)
and embed the full problem into this simple Cartesian grid. To account for the possibil
of the physical problem not being aligned with the grid, we introduce [0, %] which
measures the relative distance between the physical boundary and the first grid point
Fig. 1.

The two field components; andH, are collocated as

E(zj,0) = Ej(0), Hlzjp1.1) = Hypa ),

as illustrated in Fig. 1. The actual limits ghdepends on the individual computational
problem, and it should be clear that the first and last grid points in the computatiol
domain can bé - as well asH -nodes. We recall thatand. may depend op, possibly in
a discontinuous manner, and that the location of such material interfaces and the enclc
walls need not be aligned with the grid.

If one were to employ a Yee scheme [7], being nothing more than a centered second-c
finite difference approximation, for the spatial approximation it becomes

o 4B _ By —H4 u 1dHf+% _En-E (5)
T dr h Tt gy h ’

) Hl+3/2 HN-3/2 HN-1/2
E E, E E E =

(1) - {2)
z pec h Zmal pec

FIG. 1. lllustration of a general situation in which the computational problem is entirely embedded in

Cartesian staggered grid. The walls, situatedéé)[: and zéze)o are assumed to be perfect conductors while a

material interface is positioned ghat:
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with no special effort being made to properly account for the correct position of tl
material interfaces or the enclosing walls. Moreover, in regions where the material prope
varies discontinuously, this approach implicitly assumes that the solution is at least tw
differentiable—an assumption that clearly is violated, as one can only expect contini
across a material interface. As we shall see later, this latter problem is at least as signif
as that of not properly accounting for the position of the walls and interfaces, known as
staircasing problem.

The use of a staggered grid has the advantage of reducing the local error with a fa
of two without increasing the computational work and is a widely used technique f
second-order schemes. However, as we shall see shortly, the staggering of the grid als
additional advantages when encountering interfaces that are not aligned with the grid.

2.1. Central Elements of the Scheme

To simplify the discussion and make the central ideas underlying the scheme appe:
clear as possible, let us consider the situation of a perfectly conducting cavity, enclose
two PEC walls situated aéle)candzéi)o The cavity is assumed to be filled with two regions
of different materials, having properties?, ) and(e®, @), and with the interface
situated atmat, as illustrated in Fig. 1. The generalization to multiple regions of differer
materials is straightforward.

For the sake of the discussion, let us introduce the two sets of fieltls,, H®))
with k = 1, 2, representing the solution in the two regions of different materials. We al:
assume that the two solutions are given on two separate grids and are connected
through the conditions across the material interface, Eqg. (3), much as in a multieler
solution technique. The general scenario is sketched in Fig. 2. For simplicity we asst
here thatV, being the number of grid points in each domain, is the same for each regi
This, however, is done purely to simplify the notation and the generalization to a differ
number of grid points in each domain is straightforward.

To accountfor the situation where the interfaces, be they material interfaces or PEC wi
do not coincide with a grid point, we associate with each region two param;eg@ra,nd
y,(f), as measures of the distance from the first/last grid point to the physical position of
wall or interface relative to the grid size Clearly,y ® ¢ [0, %] and, because of the global
equidistant gridy,gk) + yL(k+1) = % across a material interface. Since these parameters
only geometry-dependent, they can be computed and stored in a preprocessing stage
the grid has been defined.

(8(2), H(Z)) E

¥h €, 1) Y(LZLh

H®

() 2)
32 Hs/z HN-3/2 N-172

! 1
M (1)
I ! H 12 H

/ {1) {1)
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@
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— [

pec 2) h
h Yr Yr

FIG. 2. Definition of grid, numbering and various parameters for solving the one-dimensional Maxwe|
equations in a PEC cavity filled with two materials.
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In the interior of each of the two regions with smoothly varying material parameters, \
shall use the standard staggered scheme

w® BY, - HY,
. 1.N—11: (k) Jj Jt+3 J73 6
J € [ ’ ] - € dt - h ’ ( )
and
dH®, g0 _ p®
je[O,N—2]: p® 12— 0 7
Jel 1t T ; (7)

wherek = 1, 2 and the numbering follows that of Fig. 2. Without loss of generality we
can assume that the material properties are constant within each region of the cavity.
subsequent discussion, however, extends trivially to include problems where the mate
vary smoothly within each domain.

To complete the scheme we shall introduce special schemes for upE#ﬂra\ndHl(Vkil

in such a way that the boundary conditions at the PEC walls, the material interface, anc
physical position of these relative to the grid is accounted for correctly.

Let us first focus the attention on the formulation of the scheme close to the perfec
conducting boundaries with the boundary conditions given in Eqg. (2). Attempting to upd:
E(()l) we realize that this is complicated by the condition being of Neumann type, which \

enforce through a second-order approximation, leading to a scheme for upﬂgfiraag;

dE(l) @ Hgl) — Hgl)
a0 _ YL 3 2 ®)
di 14,0  h

The scheme for updatingl(/l; employs an asymmetric stencil,

&) 1 1
w2 _ Ey” — Epec - £y 9)
- 1 - 1 ’
dt (1+ yL( ))h (1+ yL( ))h

and simply utilizes the wall condition for computing the flux rather tEéJH directly. Note
thatyL(l) = 0 recovers the simple staggered scheme, Eq. (7).
The scheme for updatin@}fi% is simpler, as we can explicitly exploit that? (Zped =

Epec= 0 to obtain

dH®

(2 (2
u@ N-3 _ 2 Epec— ENZ 4 _ 2 —EnTy (10)
dt 2)/1%2) +1 h 2)/1%2) +1 h

Let us now consider the treatment of the material interfaces across which we know that
individual field components must remain continuous. However, one cannot, as is implic
done in the traditional Yee scheme, assume that the fields are smooth across the bour
and simply use‘:fvlll andEéz) to updateij,lll/z.

To address this problem, we introduce the extrapolated value

2 2 2 2
Emat= (1+ VL( ))Eé - VL( )Ei )a (11)
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and complete the scheme for updatiﬁblil/z as

(D) 1
(1)dHN—1/2 _ 2 Emat — E;V)fl 5
Y +
Likewise we compute the flux (ﬁéz) by using the extrapolated magnetic field
1 1 1,1
Hmat = (1 + Vl(e ))Hlilil/Z - Vl(e )HliliS/Z’ (13)
to obtain
2 @ _
S(Z)dEO . 2 H1/2 Hmat. (14)

2@ 41 h

Before proceeding with a rigorous analysis of the scheme outlined in Egs. (6)—(14), i
worthwhile making a few observations. A key property of the scheme can be apprecie
by observing thaty®) always appear agy® + 1(« = 1 at metals, otherwise = 2)
whenever appearing in the denominator. As a consequence, the scheme can be expec
be well behaved for all values ¢f andy;. The reason for this property can be found in
the use of the staggered grid, i.e., if a scheme using a regular grid was being genera
naively, the corresponding denominator would be proportionaftband one would expect
severe stability problems for®) approaching zero. These considerations are confirmed
Section 2.3, where we show that the maximum time-step is bounded from below for a fi;
grid-size and all values gf, andyg.

One should also observe that we have chosen to describe the scheme in a method-of
framework and have not specified the scheme for advancing in time. A natural choice cc
be to also stagger in time, using the leapfrog scheme, although we shall use a Rur
Kutta scheme for the temporal integration. While the main reason for this is the poten
of implementing a fully fourth-order scheme within the same framework, it also has t
advantage of not suffering from the parasitic mode of the leapfrog scheme and of be
self-starting. Moreover, from a practical point of view, it is often advantageous to ha
all field components at the same time levels for the purpose of postprocessing and
analysis.

2.2. Accuracy

While the staggered scheme in Egs. (6) and (7), utilized in the interior of the regions
well understood, the impact of the proposed modifications along interfaces on such crit
properties as accuracy and stability is not at all obvious.

We shall begin this discussion by first analyzing the local accuracy of the scheme. Re
that the local truncation error}k) andr;’j:;, for the E and H component, respectively, of
the classic staggered scheme, Eqs. (6) 2and (7), used in the interior is

T s~ +O(h4) T(k) :ih283_E +O(l’l4)
7240 9 Tt 24 9%, ’

jt+3

w_ 1, 9H
Y= i
<j
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where we recognize the second-order behavior provided the exact sol#iang,H, are

at least thrice differentiable. Following the analysis of [21], we can then allow the use o
local first-order scheme at a finite number of grid points and maintain global second-or
convergence. This result shall be essential in the following.

Keep in mind that the temporal variable has not been discretized and no error from
time integration will be included in the subsequent analysis. For simplicity we shall n
explicitly include reference to the time in the remaining analysis.

Let us now consider the effect of the variation)df) on the accuracy of the scheme
utilized at the perfectly conducting wall in Egs. (8)—(10), and begin by analyzing the form:
i.e., Eq. (8), from which we recover a local truncation error as

1
@ 1 9H® v 92H® )
o =7 D 3 1 ok 9z2 |« + O,
1 + J/L z Zg) 1 + )/L < Z( )

At first this appears as a rather unfortunate result, as a local nonconverging term is in
duced. However, if we recall that at a PEC wall one has

82pE 82p+lH
S - _o S —o (15)
8Z2p 3Z2p+l

as a direct consequence of the equations themselves, Eq. (1), and the boundary condi
Eq. (2), one obtains, to first order jriV A, that

o 2HD
L 972

D1 9z

1 oHD
1+vy,

1
dl 14y 92

Z[(Jjé)c ZF(J:QC
at the wall. Hence, the zeroth and the first-order term vanishes identically. Indeed,
leading local error term becomes

(€N 477(D)
0*H
=t [8(r") + 13" + 8P|+ 0uh,  (16)
24(1+,") 0 |,

and the local truncation error can be expected to behave as a third-order approxime
with the error vanishing whesz(l) approaches zero.
As similar analysis for Eq. (9) yields

9D
2|+ 00, 17)
9z° |0

'pec

1
T = —5al120r")" + 67" — 1

The local truncation error on thié component, updated using Eq. (10), is straightforwardly
given as

2 212 31(2)
@ _Yr —1 0°E 1 22 @ 20°E 3
_rr_— 2y —[4 -2 122 = O3,
V1T T a T Z(z>1+24[ )" = 2+ =5, + 000

Nf2 N—

NI

(18)
indicating alocal) (k) convergence which is sufficient to guarantee gldb@?). However,
exploiting the properties of the fields, Eg. (15), we can estimate the spatial derivatives cl
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to the boundaries as

92E®@
072

92E@
az2

@ 93E®

Yr 3
2
Zéé% 8Z

+ Oh?),
(2
Zpec

@
N-3

which, directly inserted into Eq. (18) and using Eqg. (15), yields

93E®@

1
@, = 8+ a2

N-3 24

3
o, O, (19)

Zpec

Hence, the local truncation error near the PEC boundary is at least second order. We
in particular that fory,gz) = 0, the internal staggered scheme is recovered.

In light of the estimates summarized in Egs. (16)—(19), the scheme can be expecte
be globally second-order accurate and with the error being only weakly dependent on
values ofy % close to a PEC wall. As we shall see in Section 2.4, these conclusions car
verified through computational experiments.

Prior to that, however, let us also consider the error associated with the treatment of
material interfaces. Considering the scheme for upddﬁlf\}]g%, as given in Eq. (12), we

recover

&)
dH &
e N-1 _ 2 Emat— EyN_,
dt P41k

_ 2 @ o , 1. @ @ _ @
—m[% —Eya+ 5@ +D(EC - Eg) |

by combining Egs. (11) and (12) with the relatipﬁ) = % — y,gl). To derive an expression
through the usual techniques of Taylor expansions, one has to exercise some caution be
the solution, while it exists, generally cannot be assumed to be smooth across the mat
interface. The only information that is available is givenin Eq. (3), i.e., the field componel
are continuous across the interface.

With this in mind we shall do the error analysis at the grid points using solutions at t
material interface positioned at,at. Carefully keeping track of the one-sided derivatives
one obtains

2y —1 92E® 2y —1)(3-2y") 92E®@
@ VR h— n (2vg )1( YR )h . +OMY), (20)
N=3 4 dz 42y +1) 922 |+

T

Zmat Zmat

as the leading term in the local truncation error. Hefg, and z;-,, refers to one-sided
derivatives from the left and the right of the material interface, respectively. We nc
that the local truncation error is @ (k) which is sufficient to guarantee global second-
order convergence [21]. Moreover, we also observe thax,&%r: % the whole first-order
contribution vanishes, and the standard staggered grid truncation error is recovered.
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The analysis of the scheme, shown in Eq. (14), for updaﬁéﬁb proceeds along the
same lines, yielding a local truncation error of the form

2 2 2
co_ 20 -1 2H? (2y” -1)E-2y7) 9?HD L ow
0o - 2 2 2 ’
4 9z Zneran 4(2V[E : + 1) 9z Zmat
(21)
in which we again establish local first-order behavior and recovery of the standard sche
for yL(Z) = 1. One should keep in mind, however, thé?) + y}el) = % i.e., they can never

both vanish, and a first-order error term of the type given in Egs. (20) and (21) will alwa
be present and will, in light of the analysis for the errors at the PEC wall, be the domin:
source of error.

2.3. Stability and Convergence

While the issues of local and global accuracy can be addressed using standard techn
in combination with [21], the questions of stability and convergence are considera
more complex because of the extensive use of one-sided stencils and extrapolatior
combination with a variable position of the interfaces.

To address this critical issue, let us rewrite Eq. (1) in symmetric form

dE® gH®
— ’

o1 9z (22)
JH® IE®
ar ¢ ez

where, as compared to Eqg. (1), we have normalized the field components as

®
EW— 5 gk fE _ Jeog®h, o 1

[ ® [e®) 1, ®)

representing the normalized fields in th¢h region and the normalized speed of light in
the material, respectively. For simplicity, we shall restrict the attention to the nonmagne
case ofu® = @ =1.

The fields are collocated at the staggered grid, Eg. (4), and, similar to the situation she
in Fig. 2, we assume that the first grid point on the left is an electric point and that the |
point on the right is a magnetic point.

Let us introduce the projection of the exact solutianpnto the grid in the form of a
grid vector sorted as

_[ED gO rD A0 p@ {@ 22 [{@ T
u=|[Eg; HL L EgL B B H B HNi%] . (23)

Using this, we write Eq. (22) in the semi-discrete matrix form

du
— =Mu+T, 24
T + (24)
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whereT represents the grid vector of the local pointwise truncation error, and the mat
M, has the general structure

ME om0 | o0
M=2| o0 wm | 25
=410 MM 120 |- (25)
o | o wmr

The three nonzero blocks, MMM, and MF, are generated directly from the stencils
introduced in Section 2.1, i.e., Ms antisymmetric Toeplitz, representing the inner schem
of Eqgs. (6) and (7), except for ax44 block in the upper left corner to account for the
scheme given by Egs. (8) and (9). Similarly®Ns antisymmetric Toeplitz except for a
2 x 2 block in the right lower corner, representing the modifications given by Eq. (10). T
remaining block, M, is a bit more complex, as it contains all the elements accounting f
the extrapolations givenin Eq. (11) and Eq. (13), and the special differences used to up
H](Vli; and E(()Z), given in Eq. (12) and Eq. (14), respectively. Hencé Mas a central
6 x 62block and tridiagonal antisymmetric Toeplitz-like bands above and below the cent
block. The exact entries of the three M-submatrices are given in the Appendix.

While u represents the projection of the exact solution, we may also consider the g
vector,v, ordered asl, as the solution to the semi-discrete problem, weatisfies

dv
— = My,
dt
subject to the same set of initial and boundary conditions.d§ we introduce the grid
vector,e = U — v, as a measure of the pointwise errgrsatisfies the error equation
de

— =Me+T. 26
T (26)
Clearly,e is subject to homogeneous initial and boundary conditions.

Let us now assume that M is similar to an antisymmetric matrix, A, as

M = Q'AQ,

uniformly in A, yL(k), andy,(f). Hence,|Qll, and||Q~1||, are bounded as approaches

zero and for all permissible values pj"), andyl(f).
Here, and in the following, we shall use the familiar definitions of the discrete inn

products and norms

112 1Qulls
(oo =h Y ujuy luls = @ wp® QI = sup Tk
J [|ee|l #0 lulln

Let us furthermore assume that there exists two nonnegative constaautslk,, such that
KZlullz < (u, Hu), < K3)lullZ,

where we have introduced the symmetric matrix=HQ” Q. In other words, théf-norm,
||u||}2L, = (u, Hu),, is assumed to be equivalent to the discle%morm,”u”fl. We note that
an immediate consequence of this is th@t!||;, is bounded if| Q||;, is bounded.
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In this setting, Eq. (26) yields

1d 1d
57 (€ Heon = lell? = (e, QT AQe)s + (e, QT QT)y.

2d 2dt
As Q' AQ is antisymmetric, the Cauchy—Schwarz inequality immediately implies

d
- < |IT
>z V€l =T a

which, after integration in time, yields

t
lelln sfo 1T )l ds.

From theL? equivalence of théZ-norm we finally recover that there exists a constant,
such that

k2
€llp < — max | T t < Kt,
lelln < ky oo 1Tt <

i.e., the error can grow, at most, linearly in time.
We have thus established the following general convergence result [23, 24].

LEmMMA 2.1 Ifthe matrixM in Eq.(24)is uniformly similar to an antisymmetric matrix
A =QMQ™, and||Q|lx 1@~ Y|Ix is uniformly bounded for all values éf y(k), andy("),
then there exists a constark, such that the errare, is bounded as

lelln = K1,

whereK can be a function ok andu but not oft.
Such a scheme is termed a bounded error scheme.

Provided the scheme is consistent, i.gT,||;, is at leastO(h), establishing error-
boundedness of a particular scheme is clearly a stronger statement than proving
vergence using the Lax equivalence theorem, which allows up to exponential growtt
time. Moreover, if the scheme is bounded error according to Lemma 2.1, von Neum:
stability is sufficient for fully discrete stability [22], i.e., we can find a strict bound on th
maximum time-step by bounding the eigenvalugs,, of M.

In the following we shall pursue these two avenues, establishing semi-discrete as we
conditional fully discrete stability of the scheme given in Egs. (6)—-(14).

2.3.1. Semi-discrete stability and convergend&/hile we shall leave all the details of
the proof of the bounded error property of the scheme in Eqgs. (6)—(14) to the Appendi
shall prove illustrative to sketch the main ideas. The proof is constructive and is basec
the construction of an antisymmetric matrix, A, which is similar to M as

M = Q'AQ,

and||Q~ 1|, IQll» < C, i.e., if Q and its inverse are nonsingular and uniformly bounded i
the h-norm, then the conditions of Lemma 2.1 are fulfilled, and the scheme is a bounc
error scheme.
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To construct the matrix A, we first note that since it should be valid for an arbitra
number of interior grid points in each region, it is natural to expect that it will have a glob
structure similar to that of M, i.e.,

A (1““) o | o
A= B 1 AM |C(2> RE (27)
(2
o | o] ar

Moreover, we assume that the structure of the three submatri€esAX, and A%, are as
discussed for M, M™ and M?. To prove that A and M have the same eigenvalue spe
trum, one can exploit the Toeplitz-like structure of the submatrices to develop recurre
relations for the characteristic polynomials. In that way, one need only prove that the ini
characteristic polynomials, caused by the modified terms, are identical to establish th:
and M have the same characteristic polynomial and, hence, the same eigenvalue spec
The specification of A is by construction, and the entries are given in the Appendix.
To establish the existence of a nonsingular similarity transform we consider

QM = AQ.

As in the case of A, itis natural, although not necessary, to require that Q takes the glc
form

Qh 1‘_qu) o | o
™
Q= 0 7 ‘ QM Lq(z)o . (28)
2
o | o” o

Again, the structure of the three submatrice$, Q¥, and @, are as discussed for M
MM and M?, with the main difference being that the diagonal terms are nonzero, a
thatg® are different from the local speed of light. The exact entries of Q are given in t
Appendix.

To prove that Q is nonsingular an®@ (|, |Qll» < C, it suffices to prove that the H-

norm, with H= Q” Q is L2-equivalent. This, however, follows directly from the expressior
for Q given in Appendix since

02— min {c(l)z, c(l)z}
1 4

IA

%(u, diaqc(l)z, el c(l)z, 6(2)2, o C(Z)Z)u)h

(u, 0" Quy,
< 4(u, diagc®’, ... @ @ @%))

< 4max{c(1)2, c(l)z} =k2 ull, =1

IA

h

Through this line of arguments, we can thus establish Theorem 2.1.

THEOREMZ2.1. The scheme proposed in E¢®)—(14)is an bounded error scheme and
therefore it is stable.
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Proof. This follows immediately since

M=0Q7'AQ,
whereA = —AT, and||Q|[|Q" !l < C sinceks < IQlx < k2.
Following Lemma 2.1, the scheme is a bounded error scheme. ]

Before considering the fully discrete stability, it is worth realizing a few things. I
particular, we note that the proof of stability is for the general case of two arbitra
materials, connected at an interface exactly as sketched in Fig. 2. However, to pr
stability for the more general case of a sequence of material interfaces one can a
a similar constructive approach involving the recurrence relations of the characteri:
polynomials and the determinants sequentially.

Let us finally consider the case in whighor H is not continuous across the material
interface. While this is unphysical for the purely one-dimensional case, it is a situati
that appears frequently in the general multidimensional case, as we shall discuss furth
Section 3.

Without loss of generality, we can consider a situation in which the magnetic fie
components remain continuous but the electric field components are related as

ED = ¢(e®, (@)ED.

This immediately suggests that such a situation can be dealt with by simply modifying
computation o matin Eq. (11) by multiplication withp (¢, £@) before being introduced
into Eq. (12) for the update cﬁ,(vlil/z. We shall return to the performance of this approact
in Section 3.3.

To appreciate the validity of the stability proof under such slightly changed circumstanc
it suffices to recall that by proving boundedness of the error we establish convergence o
approximation directly. Since the approximation satisfies the jump-condition to the orc
of the scheme, one is left with the same error-equation, Eq. (26), that was proven tc
bounded error in the above, hence establishing convergence for the generalized case.

Another way of realizing a similar result is to exploit the multidomain nature of th
scheme, i.e., if the solutions in each of the regions are well behaved one could view
interface as connecting two separate problems through a set of given conditions. As |
as these conditions are reasonable, e.g. bounded and smooth, one should expect tha
all lead to stable approximations. This also suggests that one could introduce an artifi
interface in a homogeneous region as part of a multidomain scheme to enhance par
efficiency, among other things.

2.3.2. Fully discrete stability. While semi-discrete stability is a necessary condition fol
fully discrete stability, it is certainly not sufficient. Establishing conditions under which
fully discrete scheme is stable is, in most cases, very painful and often impossible. Howe
in this particular case it is straightforward if one recalls that

M =QAQ = QutauQ,

where U, = UL, =1 since A= —AT and ||Q|»|IQ 1|, < C as established in
Theorem 2.1. Hence, to ensure fully discrete stability, von Neumann stability is su
cient [22], and we only need derive a bound on the magnitude of the eigenvalues to ob
a necessary and sufficient CFL condition.
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Moreover, as A is normal, its eigenvectors are orthogonal and one can estimate
magnitude of the eigenvalughax as

[Amaxl = [{Umax, AmaxUmax)| = [{Umax, A Umax)|, (29)

where the entries of A are given in the Appendix, aRgy refers to the right eigenvector
associated with the maximum eigenvalue.
This yields a bound for the maximum eigenvalue as

max(c®@, ¢@)

1
hma < [3c¢® + 1+ 2v2)c?] < 4+ 2v2) - , (30)
for all values ofy®. Restricting the attention to the situation with no material interfac

but solely metallic boundaries, one obtains the bound
C
[Amax| < 2%’ (31)

wherec = ¢® = ¢ for all positions of the metallic wall.
Numerical tests confirm that the latter bound is sharp while the former bound is v
conservative and a more reasonable bound is

Arad 13max(cV, ¢®@)
< 0~ = 7
| max| = 5 ]’l )
which is only slightly above the purely metallic case.
Keeping in mind that the Yee scheme in the current setting will result in a bound as

max(c®, ¢?
g = 2T

we see that the time-step is only very slightly affected by the special treatment of |
material interfaces, while the special treatment of metallic interfaces can be done a
penalty on the maximum stable time step.

If we term the maximum local speed of lightyax = max(c®), in any of thek regions,
we have the general CFL conditions as

At < 5
a
~ 13cmax

h, (32)

wherea = 1, @ = +/3, anda = +/8 when using a Leapfrog scheme, a third-order or
fourth-order Runge—Kutta scheme, respectively. Note, that if staggering in time is use
connection with the Leapfrog scheme= 2.

2.4. A Few Numerical Tests

To verify the analysis of the previous sections, let us consider a simple test case consi:
of a one-dimensional electromagnetic resonator with perfectly conducting walls locate
zﬁa)cz -1 andz@cz 1. The interior of the resonator can either be air-filled or be fillec

with two di-electric media with the material interfacezatas = 0 andu® = 1@ = 1.0.
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The exact solution to Eq. (1) in such a geometry, vith 1, 2 signifying each of the
two regions, is given as

Ee — [A(k)ein(k)a)z _ B(k)e—in(k)a)z]eiwt’ (33)
and
H®=nW [A(k)ei"(k)wz + B(k)efi"(k)wz]eiwt, (34)
where
AD _ n® cogn®w) 4@ _ 0@ @)
n® cognDw)’ ’
and

BY = AW—i2Po  p2) _ 4@ inPe

Heren® = V¢® (see Fig. 2) represents the local index of refraction, and the wavenumb
w, takes the value @b = 277 /n if ¥ = n® = n oris found as the solution to the equation

—n® tan(n(l)a)) =n® tar(n(z)a)),

when the cavity is filled with two different media.

For n¥ = n@, the solution simply represents standing sinusoidal waves while tt
situation is a little more complicated whef? # n@. As an example we show the solution
forn® = 1and:® = 1.5in Fig. 3. We note in particular that the solution loses smoothne:
right at the material interfacegat = 0.

We shall seek the numerical solution to the cavity problem on the staggered grid, gi
in Eq. (4). Note that fop = 0 the grid coincides with the boundaries as well as the materi
interface atmat = 0, while fory > 0 the whole grid is shifted to(kvxgard the right, creating a

1

situation exactly as sketched in Figs. 1 and 2, vyé’f? =yandy, =3 —v.

FIG. 3. Solution atr = 0 for a metallic cavity filled with two different materials with an interface at 0.
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FIG. 4. The discreteL2-error atr = 2r for the electric (a) and the magnetic (b) field components in ar
air-filled metallic cavity as a function of the resolutibn= 2/N. The dashed curves are obtained without properly
accounting for the correct position of the metallic walls while the full curves are obtained with the new scherm

Let us begin by considering the vacuum filled cavity, i) = n® = 1.0. In Fig. 4
we plot the global error at= 2 as a function ofvV = 2/ for various values of. The
measure of error is defined as

N 1/2
||5E||h=< Z (E; —E(Z,)> :

and

N-1 ) 1/2
I8H || = (h (Hjpz — Hz41) ) ,

Jj=0

whereE® and H® are given in Egs. (33) and (34).

As discussed in Section 2.2, the classic staggered scheme and the new schem
equivalent for the perfectly conducting homogeneous cavity with 0, and we observe,
as expected, a glob&(h?) convergence in Fig. 4 for both the and theH component.
However, fory > 0, the schemes yield very different results with the classic scheme bei
reduced td)(h) convergence as a direct result of the geometry of the actual problem be
approximated to first order only. The new scheme, however, maintains second-order gl
convergence for both field components, yielding a dramatic improvement in accurac!
no additional computational cost compared to the classical scheme. In particular, &
computations use the same time stap, In accordance with the analysis of Section 2.2
we observe very little change of the global erroryais varied.

The situation for a metallic cavity filled with two different materials, havif§ = 1.0
andn® = 1.5, is even more alarming when one considers the performance of the clas
Yee scheme. In Fig. 5 we show the decay of the global error with increasing resolut
when using the staircased approximation as well as the new scheme where no stairc:
is introduced. We note in particular that even when the grid is aligned with the geome
the staircased approximation is reduced to a first-order scheme at best. The reason fo
is to be found in the assumption, underlying the finite-difference approximation, that 1
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FIG.5. The discretd.2-error atr = 2 for the electric (a) and the magnetic (b) field components in a metallic
cavity as a function of the resolutidgh= 2/N. The cavity is filled with two materials with the interface being
positioned at = 0. The dashed curves are obtained without properly accounting for the position of the interfa
and the correct jump conditions while the full curves is obtained using the new scheme.

function locally can be well approximated by a second-order polynomial. While this is tr
in the interior of each region, the field components can only be assumed to be continu
across the material interface. Hence, in the notation of Fig. 2, udegl\']Hg as

-2

dH®Y @ Q)
N-3  Eg —ENTy

dr h ’

M(l)

yields a local truncation error of the form

@ E@Cha) — EY e 9E® ED
T 1 = + )/ —
N—3 h 0z 2t 07 .
2 2p (2 21
y<, [9°E 92E )
Sh| ——| — Oh?), 35
2 <8z2 o2 )T (h%) (35)

and similarly forE(()Z). In situations in which the field components can be assumed to |
continuous, one recovers a locally constant term, implying that first-order global conv
gence can be expected [21]. Note that this is true for all values ek is confirmed in
Fig. 5. This is consistent with the analysis of [10, 19], showing that the global extafis

in the general case.

The above result, however, has a more serious consequence for situations in whict
field components cannot be assumed continuous, as is the case for problems beyon
dimension. In this case, a diverging term is introduced, which may lead to the formati
of spurious nonvanishing solutions. We shall return to a more detailed discussion of thi
Section 3.

For the new scheme, where no implicit assumptions are made about the behavic
the field components when they pass the material interface, the situation is significa
better, even for a grid aligned with the problem, i.z.= 0. As shown in Fig. 5, the
global second-order convergence is recovered for all valugs obnfirming the analysis

of Section 2.2.
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FIG. 6. In a) we show the solution at= 27 for a cavity filled with two materials with the interface being
positioned at = 0, while b) shows the’-dependence ofs E||;, as computed (full line) and estimated (dashed
line) using the results of the error analysis.

The analysis also suggested that the error could be expected to depend on the actual
of y—a factthatis clearly reflected |§ E ||, and less so fof§ H ||, in Fig. 5. To understand
this, and come to an appreciation of the validity of the error analysis of Section 2.2, we st
in Fig. 6 the solution at = 2. In particular, one observes that the magnitudg of larger
thanH, explaining the higher absolute error level|é# ||, through the use of Eq. (20). A
closer inspection indeed reveals that the absolute variati/f;, is approximately the
same as foll§ E ||,

A more quantitative test of the validity of the error analysis is also illustrated in Fig. 6
which we plot the computed global errftE ||, as a function of/. Based on the estimate
in Eq. (21) one should expect the dominant error term to dependam

2y -1DE@B-2y)
2y +1

I6ENn ~ay +b+c

wherea, b, andc are time-dependent parameters. Computing these parameters for
present problem at= 2, we show in Fig. 6 the variation of the estimat@d ||, compared
to the computed error as a function pf yielding an excellent agreement and giving
confidence in the analysis and in the conclusions we have based on it.

3. BEYOND ONE DIMENSION

In the previous section we focused on the details of the new scheme in a one-dimensi
setting. However, as we shall discuss in the following and subsequently illustrate,
general ideas underlying the new scheme extends to two- and three-dimensional probl
provided only that special attention is paid to the boundary conditions at PEC bounda
and at material interfaces. The reason additional work is needed for problems bey
one dimension is the introduction of a new physical phenomenon: the individual fie
components become discontinuous.
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3.1. Specific Multidimensional Concerns

As the treatment of the interfaces is a little different depending on the various cases,
find it illustrative to discuss the two-dimensional equations prior to addressing the gen
three-dimensional scenario. However, because of the variation of the problems we shal
attempt to account for all possible situations but rather present the general ideas underl
the extension of the one-dimensional approach to a multidimensional scenario.

3.1.1. The two-dimensional equationd.et us begin by considering the two-dimensional
TM equations fo H?, H*, E”) on the form

OH:  9E
Koor = Tax
IHY  OEY

=2 36
- ot 0z (36)
9EY  9H® OH-
& = —_

ot 0z ox

The field componentg>® | H*®  Ey.()) are subject to boundary conditions betweer
two regions, with material parametes§? andu®, fork = 1, 2, as

AxHD =Ax H®, (37)
,u(l)ﬁ- H(l) — M(z)ﬁ . H(Z), (38)
YD — gy (39)

HereH® = (H=® H*® 0)T andh = (7., n,, 0)7 represents a unit vector normal to
the interface.

Letus note that when considering a nonmagnetic medigufe.= 1@ = 1.0, Egs. (37)
and (38) imply that each of the individual componentsiobe continuous across the inter-
face. In this particularly simple case, the one-dimensional scheme generalizes straigh
wardly by applying it dimension by dimension, as each individual field component remai
continuous across the boundary.

For the more general case pf? # 1 more care has to be exercised. Sireis
continuous, updating/* and H* follows the one-dimensional approach while updatiiig
requires attention to the possibility &% and H* being discontinuous across the interface.

Let us, as an example, consider the scenario in Fig. 7. As usual, we have introducec
two-dimensional staggered grid constructed from the tensor-product of the grids

Zi = hziv Zi+% = hz(l + %)7 )Cj = hxjs -xj+% = hx(] + %)7

whereh, andh, represent the constant grid sizes along4tendx axis. As in the one-
dimensional case, the limits grdepend on the details of the actual problem. For simplicity
we assume that, = h, = h.

The field variables are collocated as
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FIG.7. llustration of the scheme in a2D-TM case. The full line signifies the position of the material interfac

and, following Eqg. (14), we consider the computation of thderivative of H* at (z;, x)
as
X X
8Hi’fj 2 HH_%, — Hiat

= (40)
0z 2P +1 h

The computation off,,;iS, however, somewhat more involved than in the one-dimension
case as the boundary conditions on the magnetic field components at the material inte
take the form

i, HX,(l) A HS (D _ =h, HS .2 _ Hz,(2) (41)
H(l)( g @ + A HY (1)) — H(Z)( g3 @ + A, H (2))

i.e., there are a total of four unknowns wii*-® = HZ_, being the sought after field
component. The computation & @, however, follows directly from the one-dimensional
scheme, given in Eq. (13), through an extrapolation as

gD = (1 + yl(l)) V,(::)H . (42)

Wherey(l) % — yl.(?. Since we have two constraints, Eq. (41), we shall need one mc

variable to computeé;y, .

To minimize the error associated with the use of extrapolations we shall generally st
to design the scheme such that an extrapolation never extends beyond half a grid cell. He
while one could be tempted to seek an approximatiof {6 through an extrapolation
similar to that forH*- (M an inspection of the grid in Fig. 7 reveals that such extrapolatior
will extend beyond half a grid-cell and consequently be a source of significant error.

We therefore choose to estimaie-@ by first computing the two quantities

77 2 z _.,@ z
Hji%_(lﬂ' )Hiu/i% Vijey i jup
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and subsequently approximai€ ® as

HY | +H:
Hgo@ — AI+% AI—%
2 9
i.e., the material interface is assumed to be locally piecewise linear. Using Taylor exp
sions, one can easily show thAt-(® yields anO(h) approximation to the trué/=®?,
which is consistent with the other elements of the scheme.

With this, one immediately obtains

HZ,(Z)ﬁZ + Hxa(l)ﬁx

Hig= H® 1 i (u® — @) , (43)
as a first-order approximation to the field quantity needed in Eq. (40). We note that
n® = 1@ one recoverdfy = H>W, i.e., the one-dimensional approach as discusse
above.

In the event that a material interface intersects a vertical grid line, hence requiring t
H{, 5 be computed as part of the scheme

z _ gz
BHZZ,] 2 Hi+l,j+% Hmat

0z 2% 41 h ’

(44)

a construction similar to the one used fd§,,; can be applied.

It is noteworthy that the scheme for computifg,,; becomes particularly simple when
ny = 0, i.e., in the case where the interface is parallel toxfais but not necessarily
coinciding with the axis itself. The same is naturally true f@f,, in casen, = 0. In
such cases the scheme reduces to the one-dimensional approach provided only the
jump-conditions are accounted for correctly. It is only in situations in which the materi
interface has curvature or are at some angle to the grid that the more complicated appr
is required, as only in these cases are the field components discontinuous along direc
in which derivatives are computed.

We shall also briefly consider the treatment of the boundary in case it is a perfi
conductor. To updatd* andH* near boundaries one can simply use the Dirichlet boundar
condition as

E¥@ =0. (45)

However, as for the case in which a material is present, a little more attention is neede
updateE” in the general case. Let us, as an example, again consider the situation skett
in Fig. 7. Assuming that the intersecting boundary is metallic and (E}fﬂy needs to be
updated, we must estimatg,.such that the-derivative ofH* at(z;, x ;) can be computed
as

oH", 2 H,-:_l - = Hpec

i,j 2

0z 2P 41 h ’

(46)

subject to the boundary condition

A H? 4, H @ =0,
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whereH*® = H3,. In the general case in which # 0, an approximation off = can

be obtained exactly as in the case of the material interface as an averlél?;ielotfomputed
J=3

from the interior of the domain. In the remaining case, with= 0 corresponding to the

metallic wall being aligned vertically with the grid, the problem becomes purely on
dimensional and computing thederivative of H* is done following Eq. (8) as

(2) X _ X
IH;; Vi Hi+%,j Hi+%,j
dz 1+ Vi(Z) h ’

W

and Eq. (9) for updating the neighboriity*.
Let us finally briefly discuss a situation in which the TE form of Maxwell's equations
given as

0E* 0HY
£ =
at 0x
0E~* oHY
e = — , (47)
ot 0z

oHY J0E* OE*

Rt = ox ~ oz

’

is being considered. In this event, the boundary conditions between two regions with fie
(E>W® gx® g0y and material parametees® andp®, take the form

Ax EQ=nxE®?, (48)
eWa. ED = ¢@n. P, (49)
H»D — gy (50)

whereE® = (E2®_ Ex.® 0T andh = (4., iy, 0)! represents a unit vector normal to
the interface.

When directly comparing Egs. (36)—(39) for the TM case with the above Eqgs. (47)—(*
for the TE case, one easily realizes that the latter can be obtained from the former thrc
the simple transformatio(uH*, uH*, cEY) — (¢E*, ¢ E*, —uH”). Hence, the duality
of Maxwell's equations directly yields the scheme for the 2D TE case based on the 2D
discussed in detail in the above.

3.1.2. Three-dimensional concernd.et us also attend to a number of problems as:
sociated with the extension of the scheme to a three-dimensional situation. As for
two-dimensional case we shall not attempt to formulate schemes for all possible scen:e
but rather point out the general ideas underlying the extension.

In three dimensions, Maxwell’s equations take the form

dE* 9HY 0dH* 0H* OE* QEY

13 = - ) 1% = PR
at ax ay at dy ax

dE~* oH* O0H’ dHY 0EY OE*
3 = - ) n = -

: (51)
ot oy 0z ot az dy

doEY OH* 0H*? oHY dE* OE”*

Tor T oz ax . Mar T ax ez
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The fields,E® = (Ez® gx.(®) gy.0NT gnd H® = (g=® gx-® gy.6HT “in two
regions of different materials® andu® with k = 1, 2, are connected as

AxED =AxE? ¢Da.ED=¢@n.E?, (52)
AxHY =AxH?, DA HD =, @a. HO, (53)

wherefh = (ng, ny, ny)T signifies an normal unit vector at the interface.

As for the two-dimensional case, the one-dimensional schemes can be applied direct
the material interface is straight and aligned with one of the axis. In this case, the tange
components of all field components are smooth while the normal component, which is v
specified because of the simplicity of the interface, can be adjusted directly following 1
jump-conditions of Egs. (52) and (53).

For the more general case of a curvilinear boundary, however, we have to take a cl
look at the problem of enforcing the proper conditions on the field components across
interface. Following usual practice we assume that the field components are collocatec

Z — Zz .
E* 1. 1 =F (ZH%,X],yk_,_%),

=E)C js X 3 3
i+3,jk+1 (CORIPERS /%)

EX
ij+3.k+3
¥ )

Ei,j,k = E”(zi, xj, k)

for the electric field components, while the magnetic field components are collocated a

H? = H%zi,x., 1, , Hf =H*(z,,1,xj, ,
ij+ik (i x4 70) i+1,jk CRNIRD
y )
; =HY(z;,,1,x. 1, 1).
i+3.j+3.k+3 ('+§ J+3z yk+§)

Following the notation in Section 3.1.1 we have introduced the staggered grids

: .1
Zi :hzl, Zl'-i-% :hz<l+§)s

and likewise for the nodes inandy.

To appreciate the generalization of the two-dimensional treatment of curved interface
the three-dimensional case, let us, as an example, consider a situation as depicted in F
Here a surface intersects theaxis, forcing one to consider a special scheme for updatin
EY, as thez-derivative of H* is required. The interface conditions, shown in Eq. (53)
yield the explicit relation between the magnetic field components on either side of |
interface. However, these conditions have six unknowns but supply only four conditio
Moreover, because of the structure of the conditions, only three of the conditions
linearly independent, i.e., we shall need to recover three of the field components from
grid solution by extrapolation.

Similar to the two-dimensional case, one recovés’V) directly by extrapolation

x,(1) _ D) x @ pgx
HYY = (1+ Vi.,j,k)Hi—%,j,k Vi,.i-,kHi—g,j,k’

Whereyl.(?k = % — yi(?)k assuming a generalization of the notation in Fig. 7. For the speci

case wheré, = 0, this is sufficient ag7* is tangential to the interface and one recovers
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H*@ directly through continuity. For the general case, one recovers an approximatiot
H*@ using

2 2) z 2 z
A (1 ( )H _ H
jEik T 'H/ IES NI ANNES N yi,ji%,k i+1,j£3.k

and approximatingZ* @ as

as in the two-dimensional case.
Maintaining the basic approach that extrapolations do not extend beyond half a grid
we are left only with the option of estimating*-®. Since

Hy
i+3.j+3.k+3

is sitting in plane with

X

H
i+3.j.k

but out of plane withE;‘:I.,k, we may construct an approximation i1 through the
introduction of four variables which are found though extrapolation along-tings as

~ 1) y 1 y
H = 1+ H - H
jE kL ( +yi,j:|:%,k:|:%) i—%.jt3 yi,ji%,ki% i-3,j£3ktd
where
L@ _1 o
INES N =2 B RSN EE N E T

is a relative measure of the distance between tged plane and the interface measured
along thez-axis, i.e., it is a straightforward generalization of the extrapolation utilized fc
H%@ in the two-dimensional situation depicted in Fig. 7.

From these extrapolated valugg) (1 is approximated as

1/ ~, ~
¥ _ _( y y y y )
H 4 H./'—%-,k—% + H/+2 k-3 + H/+%.,k+% * H./'—%,k+% ’

and the unknow/*- @, required to updat&”, is then recovered by enforcing the boundary
conditions to obtain

AH>@ 4+ 4, Hx(l)+n HY O

5@ _ g @ _ @
HY® = HYO i (u ) HOR2 + @72 1 1272

We note in particular that foi, = 0 one recovers continuity as expected andifpe= 0
one obtains the expression derived for the two-dimensional situation.

Clearly, to update the remaining two electric field components an equivalent procec
can be used when the grid point sits close to a material interface. Moreover, to upc
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magnetic field components positioned next to an interface one can simply exploit
duality of Maxwell's equations and exchange the magnetic interface conditions with t
ones governing the electric fields to obtain expressions equivalent to the above.

Let us briefly consider a situation in which the interface is perfectly conducting. In th
case the boundary conditions take the form

nxE=0, n-H=0,

i.e., there are two linearly independent conditionsEonvhile only one condition orH
exists. The equivalent Neumann conditions are obtained by combining these Diricl
conditions with the equations themselves.

Considering a situation as in Fig. 7, we can exploit thdtand E” are located in the
same plane of the staggered grid such that by computing

2) X 2 X
P ~ (147 )E _
ESRES * yi.,jﬂ:%,ki% INESI = yi,j:l:%,k:l:% i-1,j+3kx1’

with

J/(2)
INESI W=

being a relative measure of the distance betweeittiniel plane and the interface measured
along thez-axis, one can approximate®(® at the conductor as

1/ . . .
x,(Z) I X X X X
E '_4<Ekék—%+Er%k—%+Er%k+%+Eﬁ%k+9’

and, hence, obtain an approximation® @ through the boundary conditions as

Er@ = pr@
fx

provided onlyii, # 0. With this, we can then simply updatE_,’j,k as

y

_ 2 ry
Ei,j’k = E:

2 (Vi,j,k itLjk T

1+y,»,j’k

E»‘”(Z)).

In the very special case af, = 0 one can complete the scheme by using the Neumar
conditions on the magnetic field components similar to the one-dimensional case. We s
not give the details here as it represents only one of many special cases that will n
attention in an actual implementation but are dealt with using the same basic ideas outl
in the above.

3.2. A Note on the Implementation

The various schemes presented in the above all utilize extrapolations and one-s
stencils that depend on the position of the intersecting interface/boundary close to €
individual grid point. Indeed, it may seem as if the accuracy of the general scheme
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achieved at the expense of computational inefficiency and becomes complex because
large variability of schemes used in different places of the grid.

The situation is, however, not so bleak provided a few simple observations are utiliz
The computation of the subgrid parameters; r, specifying the exact position of the
material interfaces and the metallic boundaries, can naturally be done in a preproces
stage as can the computation of the normal vectors of the surfaces intersecting the grid

The schemes, combining extrapolation and one-sided differences, can be recast as
central difference schemes with a special scheme for each point close to the interfaces
if we consider the one-dimensional scheme discussed in detail in Section 2.1 it takes
form

aH®Y | .
@__ N-3 _ @ @) o0, W@ op@)
dr (ZV,(gl) + 1) [(rg” +DE” + (3= 2y )Ey” — 2E44].

for updatingH(l) , while we recover
N-3

(z>dE((>2) 1 @ Dy 17 (D & 6
e = 202 — (3-2yMYHDY | —(2)D _1)H ]
dt (2y,§2)+1)h[ By~ G
)
for updatingEy,”.

For the multidimensional schemes, a very similar construction can be utilized. The m
difference is, however, that the stencils in general become multidimensional close to
boundaries because of the need for additional information to correctly enforce the boun
conditions. However, as this is all constructed in a preprocessing stage it does not affec
overall computational requirements of the scheme in a significant manner.

An appealing alternative implementation is that of a predictor—corrector scheme in wh
an existing Yee scheme, serving as the predictor stage, is used to evaluate Maxw
equations everywhere while a corrector stage modifies the solutions locally according
the proposed scheme. This approach has the advantage that it can be built directly on t
existing finite-difference time-domain production codes, yielding a dramatic improveme
in accuracy at little computational expense beyond the preprocessing stage, where
corrector step is initialized. Only additional storage for the special stencils required
update the points close to the interfaces is needed.

3.3. Accuracy Revisited

To appreciate the particular importance of correctly imposing the jump-conditions wh
solving multidimensional problems, and the consequences of not doing so in the
scheme, we shall consider an illustrative example.

We consider the TE form of the two-dimensional Maxwell’'s equations

o0E* oHY
& =
at 0x
0E~X oH”Y
f—m = (54)
Z

OHY  DET  E*
Boor = ox oz
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and we recall that the boundary conditions between two regions, with the material par:
etersg® andu®, and the fields, K= ®, Ex®  gy-(®) for k = 1, 2, take the form

Ax ED =nxE®?, (55)
ePh. ED =:@n. E@ (56)
HD = gy, (57)

whereE® = (E=® Ex.® )T andh = (4., i, 0)! represents a unit vector normal to
the interface.

Let us assume that the physical situation is as illustrated in Fig. 7, with the differer
that the TE form rather than the TM form is being solved, i.e., the unknown variables :
collocated as

EEH% = Ez(z,-,xj+%), E* L= E"(z

i) HY = Gy
SinceH” is tangential to the material interface, it is continuous across the interface and
can takeu™® = 1@ = 1. Without loss of generality we can also tak® = 1.

We consider a situation in which a plane wave impinges on the interface from the |
propagating along the-axis. SincesY = 1 we have that*® = 0 while the remaining
field components are related as

A B2V =4 EX@ — i, E @)

A ES D = g(7 EY @ 4 7, B2 @),

using Egs. (55) and (56) and takiag= ¢@ for simplicity. If we now eliminate£? we
recover a relation such as

& &
EXQD = EX @2 — EX @, 58
en? + n? 1+ (e — 1) coZo (°8)

wheref simply represents the angle betw@eand thez-axis. We observe thatfér= 0, E*

is continuous as expected, while foe= /2 it experiences a maximum jump as it becomes
a purely normal component. The degree of discontinuityzéfacross the interface in
controlled solely by andé.

This result suggests that we can in fact model the implications of having a tw
dimensional problem with a general curved material interface by simply considering 1
one-dimensional situation discussed in depth in Section 2.4, however modified such
the condition onE* across the interface is given by Eq. (58).

The exact solution to this problem is easily recovered from Egs. (33) and (34) w
n® =1 n® = /e, and the only difference being thatis obtained as the solution to the
equation

— JEtan(/ew)

tanw = .
14 (¢ — 1) co26

As a simple test case, we shall take- 2.25 for which the exact solution at= 0 is given
in Fig. 8 for the case of = 30°. As expected, we see a small jump in th& component
as a consequence of the interface not being aligned with the grid.
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FIG. 8. In a) we illustrate the initial conditions for the modified one-dimensional cavity problem in the cas
where the material interface is assumed tilted at 30°. In b) we show the global2-error of E for different
angles, i.e., the degree of discontinuityfht the interface, as computed using the staggered Yee scheme and
new non-staggered approximation.

We shall now attempt to model this problem using the Yee scheme and the ne
developed scheme. The computational setup is exactly as in Section 2.4 and to make tl
even simpler we assume that= 0, i.e., the material interface is located at a grid poin
although the interface generally is tilted at some angle.

Because of the nature of the Yee scheme, it is unable to correctly model the discor
uous field component which the scheme simply assumes to be smooth, i.e., an ess
characteristic of the field behavior is removed. As shown in Fig. 8, a consequence of
is that the Yee scheme is globally nonconvergent for a problem with a discontinuous
lution, as was predicted in the analysis in Section 2.4. A manifestation of the very ba
approximated discontinuous solution is the introduction of a spurious DC component v
a magnitude that is directly proportional to the size of the jump, as shown in Eq. (3
Careful inspection of the computational results in Fig. 8 confirms this. One should rec
that while one observes global nonconvergent behavior, the solution is locally diverger

Using the new method, however, the correct solution is recovered to global second-o
accuracy, yielding a fidelity that is orders of magnitude better than obtained with the
scheme with comparable computational work.

The relevance of this study is two-fold. On one hand it demonstrates the ability of t
new scheme to accurately and efficiently model problems with discontinuous solutio
Secondly, and perhaps most importantly, it illustrates the inability of the Yee scheme
handle such problems.

The use of staircasing at a material interface completely removes the discontinuity of
individual field components with the exception of the normal component. However, beca
only derivatives of tangential components are required, this does not pose a problem. Or
other hand, an essential property of the almost tangential components, in the abav&,cas
has been lost by introducing the staircasing. As we have seen in the above, the impact o
is that the Yee scheme may become nonconvergent for very general classes of proble

3.4. Further Numerical Tests

To further illustrate the performance of the new scheme for more general multidime
sional problems we consider in the following the solution of two different problems whic
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FIG.9. lllustration of the perfectly conducting annular circular cylinder and the geometry of the computation
test.

are simple enough that exact solutions exist, yet complex enough not to be trivial. Simila
the one-dimensional cases, the solutions are advanced in time using a fourth-order Ru
Kutta method. As a point of reference we shall compare with results obtained using
Yee scheme, albeit with Runge—Kutta time-stepping rather than Leapfrog. This, howe
has no implications for the validity of the conclusions.

We shall focus the attention on solving the two-dimensional TM form of Maxwell’
equations foH?, H*, E”) on the form

dH:  QEY
Koo = ox
dH*  OEY
R = o
IEY  9H* OHF
Tor T oz ox

As our first case, testing the effects of staircasing only, we shall consider the modelinc
a PEC resonator as shown in Fig. 9. It consists of two concentric PEC cylinders with
electromagnetic wave trapped between the walls. The material is taken to be vacuum,
& = u = 1in normalized units.

As discussed in Section 3.1.1, the boundary condition at the wall is simpl¥that O,
leading to an exact time-domain solution for a cylindrical wave as

H¥*(z,x,1) = —% sin(wt + 6) sinf[ Jo(wr) — Jo(wr) + a(Yo(wr) — Yo(wr))]

cosH
— —— coqwt + 0)[J1(wr) + aY1(wr)],
or

H (z,x,t) = % sin(wt + 0) cosi[Jo(wr) — J2(wr) + a(Yo(wr) — Y2(wr))]

sing
o cos(wt + 0)[J1(wr) + aY1(wr)],

EY(z,x,1) = coSwt + 0)[J1(wr) + aY1(wr)],
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FIG.10. Ina)we show the temporal dependence of the glaBarror of EY for different resolution in terms
of the free-space wavelength for the staircased and non-staircased approximation. In b) is shown the global
att= 5, clearly illustrating the expected convergence rate.

where(r, 8) = (v/z2 + x2, arctan%) represent the usual polar coordinates, &ndndY,,
signify then-th order Bessel functions of the first and second kind, respectively.

The constantsp anda, are obtained by enforcing the boundary conditionsFdnat
r = r1 andr = rp, respectively. In this particular case, we shall take- % andry = %
implying thatw ~ 9.813695999428405anda ~ 1.76368380110927

In Fig. 10 we show the results of the simulations using the Yee scheme as well as the
scheme where no staircasing of the boundary is introduced. Using as little as 20 points
wavelength, but accounting for the boundary correctly, yields close to an order of magnit
better result as compared to the Yee scheme with 160 points per wavelength. If we recal
two-dimensional nature of the problem this implies 4r-864-fold reduction of the degrees
of freedom, and hence ar & 512-fold reduction in computing time, while improving the
accuracy. The global second-order convergence of the nonstaircased approximation is
illustrated in Fig. 10, which furthermore confirms that only first-order convergence can
expected for the Yee scheme as observed in the one-dimensional tests in Section 2.4.

As an example of a problem with a material interface, let us consider the scenario sh
in Fig. 11 in which a plane wave impinges on a di-electric cylinder, experiencing reflecti
and refraction at the material interface. The problem is solved in a scattered field/t

/ (8(1)’“‘(1 ))
r

| |
@ @y /
N

Y

FIG. 11. lllustration of the general di-electric cylinder; = 112 ande@ = 1296 and the geometry of the
computational test.
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field formulation [7], and a stabilized PML method [4] is used to terminate the rectangu
computational domain.

We shall consider a situation in whigh? = 1@ = ¢@® = 1, i.e., the material is non-
magnetics, and the material exterior to the cylinder is assumed to be vacuum. The cylir
is assumed to have a radius'ef= 7, and index of refraction of/¢@ = 3.6. As discussed
in Section 3.1.1, this implies that each of the three field components are continuous ac
the material interface and the one-dimensional scheme can be used directly to enforc
material boundary conditions. In terms of accuracy, this case is the one best suited for
Yee scheme. As we shall see shortly, however, its performance is very far from satisfac
even for this case.

If we assume that the cylinder is illuminated by a plane monochromatic unit wavelenc
wave of the form

Einc = eXp(—i2n(z — wt)), Hjj. = —exp(—i2n(z — wt)),

the exact solution to the scattering problem is given as

E¥(z,x,1)
Y o ClU, (2 /er) exp(—in 6) r<r
= exp(i2r wt) @ ,
expi2nz) + 3 00 CSH D 2nr)exp(—in®) r>r1

whereJ, andH,iz) represents the-th order Bessel function of the first kind and the Hankel
function of the second kind, respectively, while= ¢ for simplicity. As in the first test
case(r, 0) = (v/z2 + x2, arctan’) represents the usual polar coordinates.

The expansion coefficients for the total field interior to the cylinder are given as

K P @rry) — xf1 g, @2y
Vex3 B @ Jery) — xf!® Ju(@r Jery)

C;Ot — (_i)n

with
XL = Vuo1(2rr1) — Vis1(2nr1),  xg = Vae1(2uer) — Vig1(2nery),

whereV may represenf andH . The corresponding coefficients for the scattered fielc
are given as

Cscat= C;Ot-]n (277\/5”1) —(=)"Jy (27'”’1).
! 2P (27r1)

Using Maxwell's equations, one can then recover the solutions for the magnetic fit
components.

Similar to the previous case, we show in Fig. 12 the temporal behavior of the global er
as well as the result of a resolution study at a specific time. As for the pure metallic case
see that incorrect treatment of boundaries and their position severely limits the accul
of the Yee scheme which remains first-order accurate. Unfortunately, this is only what ¢
should expect based on the analysis presented earlier. Contrary to this, the new sct
is truly second order and typically yields at least an order of magnitude improvement
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FIG.12. Ina)we show the temporal dependence of the glaSarror of EY for different resolution in terms
of the free-space wavelength for the staircased and non staircased approximation. In b) is shown the global
att = 25, illustrating the expected convergence rate.

accuracy over the Yee scheme for the same resolution and, thus, the same work. More
one should keep in mind that these results are obtained for a test case for which the
scheme is particularly well suited, as all field components are continuous. As we h
illustrated in the previous section, the situation can be expected to be much worse
problems with discontinuous field components, which, after all, is the norm rather than
exception.

4. FINAL REMARKS

The purpose of this paper has been two-fold. On one hand, we presented a detailed ¢
racy analysis of the Yee scheme, which continues to be the main workhorse of time-don
computational electromagnetics. As is well known, and confirmed through the analysis
the computational examples presented, the need in the Yee scheme to introduce a stair
approximation of curved metallic boundaries dramatically reduces the overall accurac
the scheme which at best is first-order in such cases. However, the situation at transp
interfaces is even more troubling. Because the Yee scheme is applied everywhere ir
computational domain, no effort is made to impose the proper jump conditions on the e
tric and magnetic fields. Since these are continuous at best, this clearly introduces an
source of significant error which has received limited attention in the literature. Indeed
we have argued through analysis and confirmed through a very simple computational
ample, the combination of staircasing and the lack of imposing the proper jump-conditi
may well result in a nonconvergent approximation. This is a result of the elimination
almost tangential discontinuous field components, i.e., a fundamental physical property
been removed. No averaging of material properties or a variety of other simple technig
can restore this property.

It has been the purpose of the second topic of this paper to present a novel second-
scheme, building on the superior behavior of the Yee scheme in homogeneous reg
and utilizing the same spatially staggered grid, yet modified in such a way that the n
for staircasing is eliminated and physical jump-conditions are imposed to the order of
scheme. The scheme is globally second-order accurate for arbitrarily embedded interf
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and we have shown it to be convergent by proving it to be a bounded error schel
Moreover, the main source of complication as compared to the Yee scheme lies i
preprocessing phase where the location of the embedded interfaces is determined and v
specialized stencils are constructed. After that, the overall work is essentially identica
that of the Yee scheme with a similar CFL restriction for discrete stability. However, f
comparable resolution, this new scheme typically yields one to two orders of magnitt
improvement in the accuracy as has been illustrated through one- and two-dimensional
cases.

While the proposed scheme offers a fairly straightforward way of improving existir
Yee-based computational engines and eliminates the two most severe sources of el
it does not change the fact that using high-order schemes for solving the time-dom
equations almost certainly is needed to facilitate the accurate and efficient solution of I
time-dependent problems. By directly extending the ideas introduced in this paper, the
steps in the development of suitable fourth-order schemes have been taken in [25], wl
a one-dimensional fourth-order scheme has been studied computationally, yielding \
promising results. Encouraged by these results and by our own initial studies, we hop
present a stable fourth-order accurate Cartesian grid method for Maxwell’s equations in
near future.

APPENDIX: PROOF OF BOUNDED ERROR PROPERTY

In Section 2.3 we sketched the proof of bounded error behavior for the proposed sche
without providing a number of details of the constructive proof. It is the purpose of th
appendix to rectify this neglect.

We shall continue the use of the notation introduced in Section 2.3 and recall that
bounded error property is closely linked to the properties of the matrix operator, M, giv
in Eq. (25), which describes the propagation of the error as

de
— =M T.
7 €+

Heree = u — v, whereu represents the projection of the exact solution on the giiglthe
numerical solution, and@ represents a grid vector of the local pointwise truncation error.

Following the notation of Eq. (25), the three submatrices of M are given as

r (€] (€] q

ve (L ve (L
° ap? 0 e
1 1
0 0 1+y£l)c() 0
0 —c® 0 @
ME=1] 0 @ 0 D . (A1)

—c® 0 @
—c® 0




0 @D
—® 0 O

—c® 0 c® 0 0 0 0

—c® 0 c® 0 0 0
0 e 0 3-2y ) (@2 0 12y @72
@ T o, D D T oD D
1+2yp H2yg7 ¢ 14+2yp7 € A2
W @ 14, ® @ ’ (A-2)
Yr € 0 _ e c(l) 0 9 0
1,0 1—,®D 1,0
YR YR YR
0 0 0 —c@ 0 c@
0 0 0 0 —c@ 0 c@

@ 0 @
@ 0

SAOHL3IN dldD NVISTLdVO LNIDOHIANOD
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and

0 @ -
@ o0 @
MR = . (A.3)
0 —c@ 0 @
2 .
L 1+2y]g2) ¢ 0 |

Note that in M, near the material interface, we used opfe)ll) by exploiting the fact that

1 2
Vi + Ve =3

With this in place, we shall now need to establish that M is similar to an antisymmet

matrix for all values o, yék), andy,(ek). The first step is to rewrite M as

M = Q'AQ,

where A is an antisymmetric matrix. That this can be done is by no means obvious, anc
can only present a constructive proof.

The structure of A is given in Eq. (27) and we postulate that the submatrbakes the
form

ro 0 0 0
1 1
0 0 14yY «
1 1
1+y£”°() 0 e
Al =g 0 _e® 0 D : (A.4)

while the lower right submatrix & shall be given as
o @ ]
e g
AR — R . (A.5)
—c@ 2 3]
0 c 0 1+2y}g2)c
0 - /—2_-@ 0
L L2y i
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The final central matrix A takes the form

T o0 @
—e® g

—_c@ 0 e
@D 0 D 0o o0 o0
@ 0 ay  ag as
0 —a1 O as 0

0
0O —a O —-az O c?
0

0 0 0 -c® o ©@
_@ o @

@ 9 @

—c@ 0 ]
(A.6)

where the entries are given as

(1) (1?2 2
@_ VYR~ 2 @ 2 Ny

al = ¢ s a2 = a3z = -
\/ 1-3y® 42y W% _ [y D 4 5, D%@ YD 2, 102@

as =

a4: ’
/1+y(1) Zy(l) 1+y(1) 2)/(1)

To fix the notation, note that Mas well as A has a 4x 4 block in its upper-left corner
and a tri-diagonal Toeplitz tail. We shall denoté Mf rankn + 4 as M, its determinant
by dt, and its characteristic polynomial by; pin a similar fashion, we note that fand
AR both have a 2 2 block in their lower right corner and a tri-diagonal Toeplitz head
Thus for M? of rankn + 2 we use the analog {1 d¥, and (f notations. Finally, M’ and
AM have both a 6< 6 central block and a tri- dlagonal “head” and “tail.” For this more
general case, we shall use the notatioff Md}/ . p}/,, to signify MY with head length
of m and tail length of: and the corresponding determinant and characteristic polynomi
An equivalent notation shall be used to refer to the submatrices of A, their determina
and their characteristic polynomials.

To establish that A and M share the same characteristic polynomial, we shall need
following Lemma.

LEMMA A.1. Let Q571 be a rank(n — 1) matrix with the following structure
By

L
anl =

s
ISEERN NN
S0
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where By, is ank x k matrix block. Clearly k < n — 1. Assume thaQ,f and QﬁH be
matrices with a similar structureand Ietdanl, dk, and dnLJrl signify their corresponding
determinants. Then

d£+l = bd’[{ - acdﬁfl.
Proof. This result can be obtained by expand@@rl in cofactors of the last row or
column. -
With this result at hand, we can now establish the following Lemma.

LEMMA A.2. The matricesA’ and ML have the same characteristic polynomial.

Proof. For both matrices, or rather M- Al and AL — Al where | is the identity matrix,
one obtains the characteristic polynomials as

2+ )/(1) 2
PG () = A%+ L D2,
1+y,

34+ 2yP 1
phy =25+ 7)/&) %3 4 — 5 Dy
1+vy, 1+vy,

and

@ @)
Py =A%+ A3 e 3TV w2

1+y£1) 1+7/L(1)

Thus, by recursively applying Lemma A.1, it is clear that all the characteristic polyn
mials are identical. ]

An equivalent results is stated as follows.
LEMMA A.3. The matricesAX and M} have the same characteristic polynomial.

Proof. For both matrices one obtains the first few characteristic polynomials as
pE () = [72 + AZ] (c@)?
1+2y2
2 3
pRon = [<1+ 7(2)>)» + )\3} (c@)”,
1+ 2y,
and
2 2 4
pRn) = [7(2) + <2+ 7(2)>A2 + )\4} (c@)".
1+ 2y, 1+ 2y,

Hence, from Lemma A.1 it is clear that all the characteristic polynomials are identica
]

Finally we have the following Lemma.

LEMMA A.4. The matricesA)!, and M) have the same characteristic polynomial.
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Proof. It can be verified that the characteristic polynomiaf$,.mi’,. pd’;, and g,
are the same for both matrices. Thus, by recursively applying Lemma 0.1, we recover
pY , = ps., for all values ofim andn. |

To finalize the proof of M and A having the same eigenvalues, we need also consider
connection between the various submatrices. For this, we shall need the following rest

LEMMA A.5. Let QF | 0f, and QL , be the matrices defined in Lemma A.1. Let

also szfl and QR be matrices defined in a similar way although the bidgkis at the
lower right corner. Assume that the maty,,,+1 is defined as

L
Ox

Sm+n+l = abc

Then

Osni1 = detfSpynra] = bdid® —ac(dbd®_; +di_d).

m—1

Proof. This result can be obtained by expanding Qin cofactors of(n + 1)th row (or
column). ]

With this, we now have the tools to state the following.

THEOREMA.1. The matrices AEQ.(27)with entries given in EqgA.4)—(A.6),and
M, Eq. (25),with entries Eqs(A.1)—(A.3), have the same characteristic polynomial.

Proof. The statement has been established for the submatrices in Lemma /
Lemma A.3, and Lemma A.4. The validity of the statement for the full matrices follow
from connecting the submatrices using Lemma A.5. ]

To prove bounded error behavior, however, we shall also need to establish that
H-norm, using H= Q” Q, is equivalent to the usual discrdté-norm,|| - ||.

The matrix Q is found by construction under the assumption that it takes the gene
form illustrated in Eq. (28). In particular,

1 —
@ VL( ) 0
- [
l+yL

@
0 Ji4yPe® 4 0

Vit
0 el JRE R CY

L_
Q =1 o 0 q® Dy ;

¢ 0

4D D
@ O
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fe® g
DGO NG NG

¢ D 4@ 0 0 0
g®» D 4@ 0

O o o

oM — 0 a 92 93 44 ’
0 g5 g6 497 48 0

0 0 0 ¢@ —c@ _4@

0

0 0 ¢@ _@ _,@

g? —@ _y@
pCip—cy

and
[—c@ 4@
@ —@ _,o

q®@ —c@ —¢?
1+2y 2
ot (2)‘1(2) —/ TRC(Z)

Here we have, for simplicity, introduced the new variables

(1 2 2
@ =-5 J2y 3 4 4y 7, 4@ \/2 6y Y + 4y Y,

@ @

n=— 2V 4y W gy = 2(1+2V(1)),

(€] @
c 1 1)2 C 1)2
QS=—7 () 4() qe=7\/1—43/1(g),

c@

©)
1 1 c 1)2
qr = \/2+2y() 7/(), 98=—— \/1—4V1(¢)-

It is only left to prove that|| - ||z is L?-equivalent. This, however, follows from the
inequalities

min {c(l)z, c(l)z}
4

%(u’ diag(c®?, ..., c®? c@?  @*)u).

(u, 0" Quy,,

k? =

IA

IA
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< 4(u, diag(c(l)z, LW @2 c(2>2)u)h
< 4max{c(1)2, c(l)z} =k% uly =1

The lower bound is found by using the fact that @ is a diagonally dominant matrix
and it stays diagonally dominant even after subtracting a diagonal matrix of the fo
%diag(c(l)z, WP @2 @2 The upper bound is derived by bounding all the
terms in(u, Q" Qu);, taking the form 2; ju;u; by |o; j1(u? + u%). Thusky < ||Q|ln < ko.
Moreover, since Q is a (strictly) positive definite matrix, Q must be a nonsingular matrix
and||Q 1|, can be bounded ag, < [|Q7 ||, < 1/k1.
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